Agricola, Joseph  ; Molitor, Ludwig  
Theoria Motus In Conflictu Corporum Physice Et Algebraice Exposita — [Heidelberg], 1773 [VD18 14363399]

Seite: 27
DOI Seite: 10.11588/diglit.29349#0035
Zitierlink: i
http://digi.ub.uni-heidelberg.de/diglit/agricola1773/0035
Lizenz: Creative Commons - Namensnennung - Weitergabe unter gleichen Bedingungen
0.5
1 cm
facsimile
o

*

(algeb. 5. 82. axiom. 6.) h. e. f quantitates
motus aequales, fnt majjaesunt reciproce uti cele-
ritates & celeritates reciproce uti majjiic (algeb.
n. 202.) 2. Si JVX 23 m erit Qc 23 qC; proinde

Q.: q 22 C : c 7? massae aequales Jint, quantitates
motus funt uti celeritates. 3. Si C=3c erit Qm
23 qM; proinde eft Q,: q =3 M : m Ji celeritates
aequales Jint, quantitates motus funt uti massae.

§. XIV.

Theorema II. Si Qmc—qMC; erit
C : c = Qm : qM, i. e. celeritates sunt in
ratione composita ex diretta quantitatum mo-
tus & inversa majjarum. Demonstratio
patet ex didis, sumantur ut fadores fadi
Qmc, Qm & c; fadi alterius qMC, fa-
dores qM & C; reciprocando fadores erit
C : c =22 Qm : qM. Q. e. d.

Corollarium. Ergo si C.=3 c & Mzim erit
Q~ q; confiat ex didis.

§. XV.

Theorema III. SiQmc = qMC; est

M : m = Qc ; qC h. e. massae sunt in ra-
tione direQa quantitatum motus & inverfa
celeritatum.

CorollArium I. Ex utroque 2 & 3 theore-
mate sequitnr imo quod sit C : C23 C M m : cmM
zdo M : m r3 MCc : mcC; est enim Q.231VIC & q
=3 mc ergo substituendo &c.

Ratio ce!
litatum*

\

*

COROL-
loading ...