Agricola, Joseph  ; Molitor, Ludwig  
Theoria Motus In Conflictu Corporum Physice Et Algebraice Exposita — [Heidelberg], 1773 [VD18 14363399]

Seite: 44
DOI Seite: 10.11588/diglit.29349#0052
Zitierlink: i
http://digi.ub.uni-heidelberg.de/diglit/agricola1773/0052
Lizenz: Creative Commons - Namensnennung - Weitergabe unter gleichen Bedingungen
0.5
1 cm
facsimile
44

M^C+Mmc+MmC-Un^c r

erit ——-; ii porro numerato.

M 4-m

rem per denominatorem reapse dividas, quotus in.
ventus erit =: MC+mc. vid. elem. algeb. P. stlA.
KO S. J. n. 58.

Corollarium. I.
massae M post conssictum

Est ergo quantitas motus

MC+mc_M2C+Mmc

I V1 *cm**a*X**i^*iM» . —— .1-u ^ , _ n

^ ’ M+m M + m *

Et massae m

m.

MC+mc
M+m

MmCq-m^c

M -j- tn

CorollariumII. Ante incursum quantitasmo.
tus sive summa quantitatum motus erat M.C + m.c
^ MC + mc; patet igitur etiam in incursu quan.
titatem motus ante & post incursum eandem esse.

ScHOLlON. Etiam in incursu triplex casus di-
stinguitur: vel enim est M k- m , vel M <2 m, vel
M =2 m; juvat casus singulos determinare per nu-
meros ad inveniendam celeritatem communem

post incursum; exprimitur autem illa ex demon-

MC+mc

liratis (§. 10. praes, cap.) hac formula: ———

Sit ergo in subje&is expemplis

MC + mc : (M+m)

M > m. I. 6.4 + 3.2 : (6+3)

30 : 9- 3t

M < m. II. 3.4 + 6.z : (3+6)

24 : 9 —

M 22 m. III. 3.4 + 3- 2 : (3+3)

18 : 6=23.

Corollarium. Erit igitur in I Casu celeritas

mC-mc 12 —' 6 6 2

m "" — , .Z *“ *

M+m 6 + J 9 ?

ccle-

ab M amissa i. e.
loading ...