Agricola, Joseph  ; Molitor, Ludwig  
Theoria Motus In Conflictu Corporum Physice Et Algebraice Exposita — [Heidelberg], 1773 [VD18 14363399]

Seite: 76
DOI Seite: 10.11588/diglit.29349#0084
Zitierlink: i
http://digi.ub.uni-heidelberg.de/diglit/agricola1773/0084
Lizenz: Creative Commons - Namensnennung - Weitergabe unter gleichen Bedingungen
0.5
1 cm
facsimile

° <3»

ergo faifta substitutione pro my (per axiom. 4.)
erit quantitas motus post conssictum =3 Mx + mC -
mc + mx; est vero propter adionis & readionis
aequalitatem, dum globi in eandem plagam ferun-
tur eadem quantitas motus ante & post conflidum:
igitur Mx + mC —• mc + mx s MC + mc: ergo si
quantitates notae ab ignotis separentur (per algeb.
§. 109. per metathef.) erit Mx + mx 23 MC+mc-
mC + me 33 MC + 2mc —• mC. Et utrumque divi.

, .. . Mx+mx

dendo M'+ m (per §. no. alg.) erit ——- -

x M+m

MC+2mc-mC , , . . , ,.

; adeoque x h. e. celeritas globi

MC+2mc—mC

invento autem.

M + m

impingentis M ^ M + m

valore ipsius x, jam nullo negotio eruitur etiam

valor de y. Est enim yz3x + C—'c; ergo {per

axiom. 4.1 loco x substituendo ejus valorem h. e.

MC+2mc-mC . MC+srac-mC

— ? erit y :z$ —* ^ -—- + L c;

M+m ’ } M+m

ergo C —1 c reducendo ad eundem denominato-

rem M + m (per §. 45. algebr.) erit y t-

MC+2mc—mC+MC—Mc+mC—mc n

.i.—.. ~• eit vera IrlL 4

M+m ’

MC 2MC; + mC —> mC 33 o; + 2mc — mc £*.
+ mc; erit igitur contrahendo terminos (per $. 18.

, , , 2MC+mc—Mc ~ rL rr

cblgchY•) y ^3 . Q_u3c est niuiisc ni

M 4* m.

tardioris, post conflidum celeritas. Atque ex his
formulis leges speciales conssiduum in incursu glo-
borum perfede elasticorum facile deducuntur*
Vid. P. Mako cosmolog. ru 298* coroll.

§• IX-
loading ...