Agricola, Joseph ; Molitor, Ludwig
Theoria Motus In Conflictu Corporum Physice Et Algebraice Exposita — [Heidelberg], 1773 [VD18 14363399]

Seite: 85
DOI Seite: Zitierlink: 
http://digi.ub.uni-heidelberg.de/diglit/agricola1773/0093
Lizenz: Creative Commons - Namensnennung - Weitergabe unter gleichen Bedingungen Nutzung / Bestellung
0.5
1 cm
facsimile

iftum

MC-mc
M+m

Cjs.14.is.!./3.II.) adeoque

quantitas motus fortioris M post idum
.. MC-mc MMC-Mmc . ,
= M- -5CS"= -jn^-sproindeqaan.
. . w ^ m MMC-Mmc
titas motus ab M amisia = MC-

MMC+MmC—MMC+Mmc

i>m

M + m

M 4. m
MmC+Mmc
i%_ 91 tst T iTt T-*-—
M + m

sM/TSum . *. • -

Sed si M celeritate C + c

Mm.
M+m J
incurrit in m quiescens eadem est quan-
titas motus ab m amisia; est enim in hy-
pothesi m quiescentis communis post idum
, MC+Mc , , TT\
celeritas = — (js. 10. c. 1. p. II.) ergo
quantitas motus in M residua est =3 M.
MC+Mc_MMC+MMc , a.a
. mr —_ —"""i1———— • ante con nictu na in
M+m M + m
hypothesi massae M celeritate C + c in-
currentis in massam m quiescentem, est
quantitas motus massae M ante conssidum
= MC + Mc; li proinde ab hac siibtra-
hatur quantitas motus post conssidum re-
sdua, innotescit quantitas motus percon-
ss'sl _ 1\itry 1 iv>T MMC—MMc
nidum amisia = MC + Mc-rr—
1 M + m
= MMC+M Mc+MmC+Mmc—MMC—MMc
M + m
MmC

I
loading ...