Agricola, Joseph  ; Molitor, Ludwig  
Theoria Motus In Conflictu Corporum Physice Et Algebraice Exposita — [Heidelberg], 1773 [VD18 14363399]

Seite: 85
DOI Seite: 10.11588/diglit.29349#0093
Zitierlink: i
http://digi.ub.uni-heidelberg.de/diglit/agricola1773/0093
Lizenz: Creative Commons - Namensnennung - Weitergabe unter gleichen Bedingungen
0.5
1 cm
facsimile
iftum

MC-mc

M+m

Cjs.14.is.!./3.II.) adeoque

quantitas motus fortioris M post idum

.. MC-mc MMC-Mmc . ,

= M- -5CS"= -jn^-sproindeqaan.

. . w ^ m MMC-Mmc

titas motus ab M amisia = MC-

MMC+MmC—MMC+Mmc

i>m

M + m

M 4. m

MmC+Mmc

i%_ 91 tst T iTt T-*-—

M + m

sM/TSum . *. • -

Sed si M celeritate C + c

Mm.

M+m J

incurrit in m quiescens eadem est quan-
titas motus ab m amisia; est enim in hy-
pothesi m quiescentis communis post idum

, MC+Mc , , TT\

celeritas = — (js. 10. c. 1. p. II.) ergo

quantitas motus in M residua est =3 M.

MC+Mc_MMC+MMc , a.a

. mr —_ —"""i1———— • ante con nictu na in

M+m M + m

hypothesi massae M celeritate C + c in-
currentis in massam m quiescentem, est
quantitas motus massae M ante conssidum
= MC + Mc; li proinde ab hac siibtra-
hatur quantitas motus post conssidum re-
sdua, innotescit quantitas motus percon-
ss'sl _ 1\itry 1 iv>T MMC—MMc

nidum amisia = MC + Mc-rr—

1 M + m

= MMC+M Mc+MmC+Mmc—MMC—MMc

M + m

MmC

I
loading ...