Agricola, Joseph  ; Molitor, Ludwig  
Theoria Motus In Conflictu Corporum Physice Et Algebraice Exposita — [Heidelberg], 1773 [VD18 14363399]

Seite: 86
DOI Seite: 10.11588/diglit.29349#0094
Zitierlink: i
http://digi.ub.uni-heidelberg.de/diglit/agricola1773/0094
Lizenz: Creative Commons - Namensnennung - Weitergabe unter gleichen Bedingungen
0.5
1 cm
facsimile
86

° j$s

JWmC-pMmc

M + ni

(C -f- c) Mm. In utroque

igitur catu eadem motus quantitas amiti-
tur a masta M; ergo idem est ac si masta M
celeritate C -f- c incurrat in malTam m
quiescentem; Eli autem (per coroll. i. /. 2.
cap. praes.) V = e; ergo idem est in oc-
cursu elasticorum, ac ii M viribus V + e
aut celeritate C -f* e incurreret in m quie-
lce ns.

SciIOLION. Sicuti poni potest massam M cele-
ritate G + c incurrere in massam m quiescentem,
ita pariter masla M potest conliderari ut quieseens,
si ponatur massa m celeritate C + c incurrere in
massam M, si enim celeritas niassae M concipia-
tur esse in massa m, M nulla gaudere celeritate
concipitur, adeoque reifte specdatur ut quieseens,
id vero fieri polle constat (cx Jc/iol. 2. §. 10. cap. 3.
p. I.)

Corollarium I. Erit igitur celeritas massae m

C + c MC + Mc

Est enim (per theorem. praes.) perinde ac si M

in m quieseens incurreret celeritate C + c; ergo

(per theorem. 4. 5. i}- p. H-) est M + m : M ~

„ MC+Mc

C+c : x ni —ergo.

M+m

Corollarium IT. Et quoniam (perschol.
praeccd.) etiam M ipedtari potest ut quieseens,
erit celeritas a massa m per elater em aequi si ta

m

r
loading ...