Universitätsbibliothek HeidelbergUniversitätsbibliothek Heidelberg
Überblick
Faksimile
0.5
1 cm
facsimile
Vollansicht
OCR-Volltext
The Dioskouroi as the halves of the Sky 433

'They bisected the sky theoretically into hemispheres, one above, the other
below, the earth, and called them Dioskoroi, adding a marvellous tale about
their life on alternate days1.'

Again, that acute doubter Sextus Empiricus (c. 180 A.D.), a propos
of men raised to the rank of gods, writes as follows :

' Moreover, they say that the Tyndaridai usurped the reputation of the
Dioskouroi, who were thought to be gods. For in those days wise folk spoke of
the two hemispheres, the one above the earth and the other below it, as Dios-
kouroi. Wherefore also the poet, hinting at this, says of them :

One day they are alive, the next day dead
In alternation, honoured like to gods.

And men put pilot on their heads with stars atop, hinting at the arrangement of
the hemispheres2.'

An anonymous Introduction to tlie PJiaenomena of Aratos (later
than s. i A.D.) alludes briefly to the same ' Homeric allegory3.' And
Julian attacks it in his oration on The Sovereign Sun (361 A.D.):

'Who, think you, are the Dioskouroi, my wise friends, you that accept
tradition without criticism?... Some have supposed that the theogonists meant
the two hemispheres of the universe. But this is absurd. For how each of the
hemispheres is "alternate of days" it is not easy to imagine, since the increase
of their light each day is imperceptible4.'

Ioannes the Lydian (c. 490—c. 570 A.D.) repeats the theory :

'The philosophers declare that the Dioskoroi are the hemisphere below,
and the hemisphere above, the earth ; they take it in turns to die, according to
the myth, because turn and turn about they pass beneath our feet5.'

1 Philon de decalogo 12 (iv. 258 Richter) rbv re ovpavbv et's {jfUff<palpiov rcj \byto bixv
SLaveifiavres, to fx.lv iiwep yrjs, to Se vtto yrjs, Aioc~Kopovs eKa\ec~avTo, wepi Trjs eTeprffj.e'pov
farjs avTwv irpoo~Tepa.Tevo~afj.evoi 5Lrry~~p.a.

2 Sext. adv. math. 9. 37 Kal tovs TvvSapiSas 5e cpao~i tt)v tGjv Aioo~Kovpcov bb^av inreXdeiv
~rd\iv (ail leg. tt&Xai ?) vofxi'^ofxevuv elvai 6e<2v ' ret yap dvo ~)iJUo~<paipia, to re virep yijv Kal
to vtto yrjv, Aiotr kov povs ot o~o(poi tu>v tote dvdpwiruv 'iXeyov. bib Kal 6 ~tol-i~tt)s TOVTO a'lVLTT-
bfxevbs -brjcnv eV' avTuiv " aXXore fxev ^toova' eTep-jfjepoc, aWore 5' at/re | redvaaiv • Tifj.y)v
be XeXSyx^-iTLv laa deo'iai" (Od. ri. 303 f.). ttlXovs t' t~TiTideao~w ainoh /cat eirl tovtols
dare'pas aivio~o~bfievoi (alv ltt b fiev 01 ?) rrjv tujv r\\xio~<paipitov KaTac~Kevr]v.

3 Anon, i isag. in Aratiphaen. praef. p. 89, 24 ff. Maass et be tlo (pi\ov /cat ras Trap'
'OfxripLC aWi-yopias eiferdcrat, pabibv eo~Tiv ibelv /cat tov iroKov /cat tt\v dtbiov KLvi~o~tv /cat rd
rjixLacpaLpia /cat tt)v et's (puis avT&v dfj.oij3rjv... "aWore 5' a3<re>| TeQvdaC (Od. 11. 303 f.).
p.:r\ j3\ao~<pT-/j.rjo~'~s, dvOpwire' ovk d~Todvijo~Kei debs, to d<paves tovtov ddvaros rjv. bid tovto
/cat 'gwypd-boi Tefxvovai tQv 6eu>v rrjv Ke<pa\r\v et's lo~ov e/carepcj <tGjv> tov ttoXov rjp.io~(paipiLov
(so E. Maass for rr\v laofj.oipLav cod. V.).

4 Ioul. or. 4. 147 A—B ot Ai6o~KOVpoi rives vfuv elcriv, c3 o"oc/>o>rarot /cat dj3ao~avio~Ttos rd
TToWd irapabexou-evoi;,.. ovbe yap (is vireXafiov etprjerdai Tives irpbs tQ>v 6eo\bywv Tifua-baipia
rod iravTOS ra bvo Xbyov £xeL rlI/a ' ttCjs yap iffTiv eTeprffiepov avTwv iKao~Tov ovbe e~Tivor)C~aL
pq.biov, 7]fxepas eKdo~T7]s dveTTaLadijTov tt)s /caret rbv ■biorio~p.bv avrwv Trapav^riaeus yivop.e'vris.

5 Lyd. de mens. 4. 17 p. 78, 17 ff. Wiinsch ot (pi\bo~o<poi (pacri ALoaKopovs etcat rb vtto
yr)v Kal <ro> virkp yr\v r)p,io~ipaLpLoV reXeurtDcrt 5^ d/xot/3a56v fj.vdt.Kws, oiovei virb tovs &vtL-
TTobas e| dfxoi(3rjs (pepbfxevot..

C. II. 28
 
Annotationen